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Abstract: 

 In determining the modes of the upper and lower bout of the violin, we were able 

obtain a physical representation of the first ten modes of a circle-like representation and 

the first six modes of a stadium-like representation of the bouts of a violin1.  We 

concluded that the resonant frequencies were high because we where dealing with a plate 

of spruce wood that has a high speed of sound.  The high speed of sound allows the plate 

to be set into motion quickly, which is ideal for a violin to sound.  We then compare this 

frequency to the resonant frequency of the box of the violin. 

 

Introduction: 

The first violin known to date is the 1564 Andrea Amati violin named Charles IX.  

Andrea Amati was one of many famous Cremonese makers from Cremona, Italy.  Other 

well known makers are Antonio Stradivarius and Guarneri.  It is believed that the original 

Cremonese makers succeeded in their field of work because they understood how the 

violin functioned as a whole.  Many understood mathematically and scientifically what 

was occurring and were able to adapt their violins to accommodate for experimentation. 

Through experimentation, the Cremonese were still able to produce beautiful sounding 

instruments. Unfortunately the true understanding of violins was lost because 

mathematics was considered witchcraft and was not passed on to the apprentices of the 

Cremenese makers. The apprentices rather copied their instructor’s previous instruments.  

Today, we are still copying the Cremonese makers, but also have become very curious as 

to how they function.      

                                                 
1 The bout of a violin is roughly the oval shaped part of the top and bottom of the violin plate. 
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 Looking at the design reveals a very complex structure that we today cannot 

predict the outcome before the violin is finished.  Within this complex structure many 

mathematical models and bases have been uncovered; such as repeating numbers, aveca 

pieces, catenaries, golden ratio, and many more.  For our purpose there will be a brief 

discussion on repeating numbers and the construction of the aveca pieces which is the 

formation of pentagons.  No one will ever know whether or not these mathematical 

concepts are how the violin was first designed, but as a guess, it still holds today. 

 One of these mathematical concepts in the layout of the violin top is repeating 

numbers. Throughout the violin we see repeating numbers.  A repeating number is when 

you find a number two or more times in a given region.  For example, the inside of the 

violin is 321 mm from end block to upper block and the string length is also 321 mm.  

This style is continuous throughout the whole violin.  Where there is one measurement, 

there is the same one existing somewhere else.  The famous Cremonese maker Antonio 

Stradivarius used repeating numbers everywhere on his instruments.  One of Stradivarius’ 

ways of determining repeating numbers was by using the golden ratio.  The golden ratio 

is (1 ± √(5))/2  which equals 1.618 and 0.618.  This implies a ratio of 1 to 0.618.  He 

began with 1 and repeatedly multiplied it by 1.618 until he arrived at a number that best 

suited a measurement on the violin.  Another way of finding repeating numbers is taking 

an existing number and continually dividing the number by 2. One of the most popular 

numbers used is 40.125 mm.  Here is how this number came about. The number 321 mm 

when halved returns the length of 160.5 mm which is the distance from the end block to 

where the conical hole is on the inside of the violin.  The next important number is 

40.125, which is the width between the upper eyes of the f holes.  
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 In the design of the violin, the pentagram allows you to physically draw up the 

shape of the violin and determine where the nodes are throughout the instrument.  The 

pentagram is believed to be how the violin was originally designed.  Courtesy of Thomas 

G. Sparks an excellent representation is shown in Fig. 1.12 

                                                 
2 To see the lower bout separately see Appendix D. 
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Figure 1.1  (not scaled to actual size) 
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In constructing the pentagon, you begin with two circles of diameter 321 mm (the 

length of the violin from end block to upper block) with distance 160.5 mm center to 

center of the circles.  Next a pentagon is constructed on the inside of one of the circles.  

Within the pentagon a five point star can be formed and within that star is another 

pentagon in which another star is able to be formed.  This process can continue for an 

infinite amount of times.  If we extend the lines that create each star all the way 

throughout the circle, then a grid is formed within the circle.  Within this new grid, one 

can see there are ten lines crossing at a single point.  These points are nodal points.  By 

taking these nodal points, we can determine the lower and upper bout using circles.  We 

know that the largest part of the upper bout is 160.5 mm; therefore, by finding nodal 

areas on the grid, we can construct two circles a distance d apart between the center of the 

circles, totaling 160.5 mm.  The same goes for the lower bout, which has a measurement 

of 200 mm between the largest part of the lower bout.  This is as far as we need to 

proceed in the construction of the violin through the pentagram since we are going to 

now examine the modes of the violin within these two regions of the violin; the lower 

bout and upper bout. Before we get into this, an introduction into what is going on within 

the regions is necessary. 

Data/Analysis: 

 When we pluck a string on a violin, we can see that we have set the string into 

motion; this is also referred to as a pizzicato.  Consider the initial state where the string is 

resting at zero.  The motion can be considered a fixed ended wave, because the bridge 

and the string nut are acting as nodal points.  
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Figure 1.2 (Beasment, 14) 

 

If we pluck the string we can see that the two forces from the fixed ends are acting on the 

string in opposing directions.  See Fig. 1.3.  The two forces eventually head in the same 

direction (#4 of figure 1.3), but the shape of the string is half positive and half negative 

according to how we defined the initial state.  This process continues creating the 

complete opposite of when the string was released.  At this point, we can consider the 

point at which the force directions cross; see # 7 in Fig. 1.3.   

 

       Figure 1.3 (Beasment, 12) 

 

This process continues until the string is no longer in motion.  Here is a picture of the one 
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dimensional wave equation and what is going on frame by frame3.  

   

 

             Let's examine the two-dimensional wave equation of a circle, which will be 

applied to the violin top later. The two-dimensional wave equation is, 

c^2(u(rr) + 1/r u(r)) = u(tt), 0<r<ρ, t>0     
u(ρ,t) = 0, |u(0,t)|<∞, t>0          (2) 

u(r,0) = f(r), u(t)(r,0) = g(r), 0<r<ρ     ([1], 542) 
 
These solutions of the wave equation for the circle are called Bessel functions.  Bessel 

functions can be used to define a two-dimensional function that is fixed to zero on a 

closed boundary.  The lowest order two-dimensional Bessel function can be used to 

model a drumhead with radius R.  The boundary conditions are f(R) = 0.   Let's consider 

the Bessel function as a drumhead.  Depending on where the drumhead is struck, 

different motions or modes within the circle are excited.  If the drum is struck directly in 

the center, one can see that a cosine-like wave is formed.  Likewise, if the drumhead is 

                                                 
3 Mathematica was used to produce this image.  See appendix A for the Mathematica code leading up to 
this figure 
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struck at R/2 then a sine-like wave is formed; see Fig. 2.1. 

             Each order Bessel function has an eigenvalue that corresponds to different 

situations of how the membrane oscillates within the circle.  The next step is to determine 

these eigenvalues. With the help of Mathematica, the eigenvalues are α and representing 

the mode number is n. 

an_ := an = BesselJZeros@0,8n, n<D@@1DD 
 
c=340.29; 
rho=1; 
f[r_]=r(r-1); 
g[r_] = Sin[Pi*r]; 
 
kn_ := kn = an�rho; 
 
an_ := an = H2* NIntegrate@r* f@rD* BesselJ@0, kn * rD,8r, 0, rho<DL @1, anD̂2; �BesselJ
  
bn_ := bn = H2* NIntegrate@r* g@rD* BesselJ@0, kn * rD,8r, 0, rho<DL�Hc* kn* BesselJ@1, anD̂2L;   

Table@8n, an, kn<,8n, 1, 10<D��TableForm 
 

 

1 2.40483 2.6661
2 5.52008 6.11982
3 8.65373 9.59393
4 11.7915 13.0727
5 14.9309 16.5531
6 18.0711 20.0344
7 21.2116 23.5162
8 24.3525 26.9983
9 27.4935 30.4806
10 30.6346 33.963     Table 2.1 

         Each of these eigenvalues corresponds to a different mode of oscillation.  Here are 
the first four modes4. 
 

 
 
With these eigenvalues, we can obtain the frequencies of the top plate upper bout of the 

                                                 
4 see appendix B for Mathematica code 
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violin if it is modeled by a simple circle.    

          Consider the simplest case where the upper bout is a single circle in the design (we 

know that from the pentagon that two circles make up the majority of the upper bout, but 

we will get to that later). From the design we know that the radius of this circle must be 

80 mm.  Because we have determined the first 10 eigenvalues we can determine the 

frequency of the single circle plate of the upper bout where the fundamental is found by, 

  f1 = 5.898 (h/r0
2) √(E/ρ)   (2) 

 
where h is the height of the plate, r0 is the radius of the circular plate, E = 14,000 MPa 

isYoung’s modulus for spruce, and ρ is the density at 440 kg/m^3.  We can also obtain 

the harmonics of the plate by, 

  fn = (mn/m1) * f1    (3) 

where  m1 is the first eigenvalue and f1  is the fundamental frequency. With these 

numbers, the frequency is as follows for the single circle of radius 80 mm. 

r = 0.080 m  
   
n m f (Hz) 

1 2.4 20793.25 
2 5.52 47824.48 
3 8.65 32583.63 
4 11.79 28341.33 
5 14.93 26331.07 
6 18.07 25166.38 
7 21.21 24406.47 
8 24.35 23871.56 
9 27.49 23474.6 

10 30.63 23168.33 
 
Table 2.2 
 
Now graphing the frequencies, 
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Figure 2.2 
 
we can see that the frequencies are very close to sitting on a linear line, except if we take 

a closer look at the frequencies in a Bessel function, we can see that there are small non-

linearities within the first few frequencies.  Likewise, the frequencies for the lower bout 

of radius 100 mm is determined the same way. 

n m f (Hz) 
1 2.4 13307.68 
2 5.52 30607.67 
3 8.65 47963.11 
4 11.79 65373.99 
5 14.93 82784.88 
6 18.07 100195.8 
7 21.21 117606.6 
8 24.35 135017.5 
9 27.49 152428.4 

10 30.63 169839.3 
Table 2.3 
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Frequency for .10 m radius plate
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Figure 2.3 
In order to better model the violin bouts, we need to move on to a stadium-like 

representation, where two circles or radius R are set next to each other a distance a apart.  

See Figure 2.4. 

   Figure 2.4   

From the drawing of the pentagram, we get R = 63 mm and a = 34 mm for the upper bout 

and R = 70 mm and a = 60 mm for the lower bout. We can determine the frequency by 

setting the limit as a  0.  This limit tells us that the value of R is just the radius of one 

of the circles.  So for the upper bout, R = 63 mm and the lower bout R = 70 mm.  But that 

is not all that has changed.  The Eigen values of the solution to the wave equation are not 
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the same anymore, because we changed shape.  Determining them is quite complex and 

the aid of Mathematica is needed5.   

 In the calculation of the eigenvalues for the stadium, k is the first scaled 

eigenvalue, ± o is the size of the eigenfrequency matrix, R is the radius of the circle, a is 

the distance between the two circles, and pp is the number of points for the numerical 

integration.  Because the Eigen value is unitless, R and a are just ratios to each other.   

 
fourierMatrix[k_, o_, {R_, a_}, pp_] := 
Module[{h\[Delta] = N[\[ScriptL][{R, a}]/pp], rData, \[CurlyPhi]Data, 
sData, l1, l2, l3}, 

 
With[{k = 1, l = 1, n = 1, R = 1, a = 0.859},  
NIntegrate[Evaluate[ 
         Exp[-2 Pi I n s/\[ScriptL][{R, a}]] Exp[I l \[CurlyPhi][s, {R, 
a}]] * 
         BesselJ[l, k r[s, {R, a}]]],  
         {s, 0, Pi, Pi + 2, 2 Pi + 2, \[ScriptL][{R, a}]}]] // Timing 
 

{0.441659 Second,2.73262\[InvisibleSpace]-4.40427 \[ImaginaryI]} 
 
det[k_?NumericQ, o_, {R_, a_}, pp_] :=  
      Det[fourierMatrix[k, o, {R, a}, pp]] 
 
Timing[mat = Table[{k, det[k, 2, {1, 1}, 301]}, {k, 0.1, 6, 1/30}];] 
 

{50.2989 Second,Null} 
 
Show[Apply[Function[{reim, col}, 
     (* real part in red; imaginary part in blue *) 
     ListPlot[{#[[1]], reim[#[[2]]]}& /@ mat,  
               PlotJoined -> True, PlotStyle -> col, 
               DisplayFunction -> Identity]], 
     {{Re, {Hue[0]}}, {Im, {Hue[0.8], Dashing[{0.01, 0.01}]}}}, {1}], 
     DisplayFunction -> $DisplayFunction,  
     PlotRange -> {-1, 1}, Frame -> True, Axes -> False] 
 

                                                 
5 For full code from Mathematica see Appendix C 
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 Figure 3.1 
 
The crossings at zero are the eigenvalues that we are looking for.  In order to find them 

we use the function kRoots from Mathematica. 

 

startPairsN = {{1.7, 1.8},{2.1, 2.2},{2.8,3.0}} 
{{1.7,1.8},{2.1,2.2},{2.8,3.}} 

 
kRoots = (k /. FindRoot[Re[det[k, 2, {1, 1}, 301]],  
      Evaluate[{k, Sequence @@ #}], 
             MaxIterations -> 30, AccuracyGoal -> 10])& /@ startPairsN 
 

{1.77792,2.1661,2.84605} 
 
Now that we have found the first 3 roots, we can graph them to see what the function  
 
looks like. 
 
fourierMatrices =  
 Transpose[fourierMatrix[#, 2, {1, 1}, 301]]& /@ kRoots; 
 
nontrivialHomogeneousSolutions =  
  NullSpace[#, Tolerance -> 0.1][[-1]]& /@ fourierMatrices;  
\[CapitalPsi][{r_, \[CurlyPhi]_}, k_, v_] := v.Table[BesselJ[l, k r] 
Exp[I l \[CurlyPhi]], 
                   {l, -(Length[v] - 1)/2, (Length[v] - 1)/2}] 
eigenfunctionPicture[k_, v_, {pp\[CurlyPhi]_, ppr_}, col_, opts___] := 
Module[{points, polys, boundary}, 
 
boundary = {Thickness[0.01], GrayLevel[0], 
            Line[Table[1.006 r[s, {1, 1}]* 
                    {Cos[\[CurlyPhi][s, {1, 1}]], Sin[\[CurlyPhi][s, {1, 
1}]], 0}, 
                       {s, 0, 2Pi + 4, (2Pi + 4)/501}]]}; 
 
points = Table[\[Rho] = N[\[Alpha] r[s, {1, 1}]]; \[Phi] = 
N[\[CurlyPhi][s, {1, 1}]]; 
      {\[Rho] Cos[\[Phi]], \[Rho] Sin[\[Phi]], 
Re[\[CapitalPsi][{\[Alpha] \[Rho], \[Phi]}, k, v]]},  
      {s, 0, \[ScriptL][{1, 1}], \[ScriptL][{1, 1}]/pp\[CurlyPhi]}, 
{\[Alpha], 0, 1, 1/ppr}]; 
 
polys = Table[Polygon[{#[[i, j]], #[[i, j + 1]], #[[i + 1, j + 1]],  
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                       #[[i + 1, j]]}&[points]], {i, pp\[CurlyPhi]}, {j, 
ppr}]; 
(* show graphics *) 
Show[Graphics3D[{boundary, EdgeForm[], col, polys}], opts, 
     PlotRange -> All, Boxed -> False, BoxRatios -> {4, 2, 1}]] 
Show[GraphicsArray[ 
Table[eigenfunctionPicture[kRoots[[k]],  
        nontrivialHomogeneousSolutions[[k]], {201, 101}, 
        SurfaceColor[Hue[k/4], Hue[k/4 + 0.4], 2.8], 
                    DisplayFunction -> Identity], {k, 3}]]] 
 

figure 3.2- First three modes of the oscillation of the upper bout. 
 
We can use FindRoots again to determine the next three eigenvalues {3.13798, 3.40541, 

3.88144} and their graphs are as follows.  

 
Figure 3.3- 4th-6th modes of the oscillation of the upper bout. 

 
 
 Now that we have determined the eigenvalues for the stadium-shape, we can 

calculate the frequency for a plate.  For the upper bout with R = 63 mm, the frequencies 

are: 

 

 

r = 0.063 m  
d= 0.034 m  
   
N k f (Hz) 
1 1.77792 33529.06 
2 2.1661 40849.58 
3 2.84605 53672.48 
4 3.13798 59177.87 
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5 3.40541 64221.22 
6 3.88144 73198.47 

Table 3.1 
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Figure 3.2 
 
Likewise, the frequencies for the lower bout with R = 70 mm is as follows. 
 

N k f (Hz) 
1 1.77792 27158.54 
2 2.1661 33088.16 
3 2.84605 43474.71 
4 3.13798 47934.07 
5 3.40541 52019.19 
6 3.88144 59290.76 

Table 3.3 
 

Frequencies of 70 mm circle plate
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Figure 3.3 
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As you can see in all cases the frequencies are very high, and probably not in the range of 

human hearing.  The reason for this is that each set of frequencies are for a small part of 

the instrument plate, not the actual air column in the violin.   This shows that when the 

violin is played the violin is set into motion very quickly, because of the high speed of 

sound in the solid top plate.  This is only a theoretical representation of the average speed 

of sound for spruce.  Specific gravity plays a large role in changing these calculations.  If 

the specific gravity lowers, then the speed of sound increases, because the actual weight 

of the wood has decreased.  A low specific gravity is ideal in spruce for violins. 

The frequencies for the air column of the box formed by the top and back plate of 

the violin are in the range of human hearing.  If we call the direction pointing from the 

back plate to the top plate the z direction, we can calculate the frequencies in the air 

cavity in the z direction. First consider a box of height h.  We know that, 

    h = λ/2      (4) 

where λ is the wavelength and  

    f = c/ λ     (5) 

where c is the speed of sound in air and f is the frequency.  Therefore we can conclude 

that the frequency is, 

    f = c/(2h)    (6) 

Now let us look at the instrument itself.   
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Figure 4.1 
 
We can see the shape of the top and bottom of the instrument look nothing like a box.  If 

we look at the center of the violin top, we can determine an equation for the catenary.  

The distance from f-hole to f-hole is 40.125 mm, with height 16 mm.  Knowing the initial 

function form for a catenary as 

y =(a/2)*(Exp[b*x/a]+Exp[-1*b*x/a])-a   (7)

 we can use Mathematica to obtain a and b respectively. 

 
FindRoot[{(a/2)*(Exp[b*20.125/a]+Exp[-1*b*20.125/a])-a�16,(a/2)*(Exp[-
1*b*20.125/a]+Exp[b*20.125/a])-a�16},{a,1},{b,1}] 
 
 {a→1.72558,b→0.258963} 
 

 
 
a=1.72558 
b=0.258963 
 
Plot[(a/2)*(Exp[b*x/a]+Exp[-1*b*x/a])-a,{x,-20.125,20.125}] 
 1.72558 
 0.258963 
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 �Graphics� 
 

We now have a physical representation of what the catenary of the violin top 

looks like.  Now lets determine frequencies at a point within the violin.  For the case 

where x = 0 and x = 321 mm, we can conclude that the height of the air column is 32 mm 

which is the height of the rib structure of a violin.  This returns the resonant frequency 

5317.(1) Hz.  Likewise, at the largest point the center (the point at {0,0} on the graph) of 

the violin, the height is equal to 64 mm where 16 mm is the height of the canaries of both 

plates.  This returns a frequency of 2658.(1) Hz for the center of the violin.  This 

frequency is note E7 on the musical scale.  In addition, 5317 Hz is twice the frequency of 

E7.  In a Stradivarius violin, the frequency of the air column is a D.  So my 

measurements are close for a single point.  Again this is only a theoretical model of what 

is occurring.  Certain things have not been accounted for that would make the calculation 

change,  such as the spruce top and maple back; where the 16 mm measurement contains 

3.5 mm of spruce and 3.5 mm of maple.  In addition, each instrument changes according 

to its quality.  

We have looked mathematically at different eigenfunctions, which allowed us to 

determine the frequencies of these oscillations, by applying it to sections of a violin top.  

We can see the two-dimensional Bessel function frequencies have non-linearities to the 

one-dimensional frequencies.  We saw that sections of the violin top produce high 

frequencies that allow for the top to be set into motion quickly to produce sound from the 

air column of the violin.  The air column at two points on a fixed slice in the center of the 

violin produces a frequency corresponding to the note E7 or a harmonic of it.     
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Appendix A: 
f[x_]=Sin[π x]; 

3x+1; g[x_]=
 

 
a1 = 2à

0

1
f@xDSin@p xD âx

 
 1 

 
an_ = 2à

0

1
f@xDSin@n p xD âx

 
 

 
-

2 Sin@n pDH- 1+ nLH1 + nLp  
 

 
bn_ =

2Ù01g@xDSin@n p xD â x

n p
��Simplify

 
 

 

2 n p - 8 n p Cos@n pD+ 6 Sin@n pD
n3 p 3  

 

 

Table@8n, bn, bn��N<,8n, 1, 10<D��
TableForm  

 

1 10
p2 1.01321

2 - 3
2 p2 - 0.151982

3 10
9 p2 0.112579

4 - 3
8 p2 - 0.0379954

5 2
5 p2 0.0405285

6 - 1
6 p2 - 0.0168869

7 10
49 p2 0.0206778

8 - 3
32 p2 - 0.00949886

9 10
81 p2 0.0125088

10 - 3
50 p2 - 0.00607927

 

ar[u,uap ox] 
  
Cle pr

 u@DSin@n_ = bn n p tD@Sin n p xD; 
 uapprox[k_]:=uapprox[k]=uapprox[k-1]+u[k];uapprox[0]=Cos[π t] Sin[π x]; 
 uapprox[10] 
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Cos@p tDSin@p xD+
10 Sin@p tDSin@p xD

p 2
-

3 Sin@2 p tDSin@2 p xD
2 p 2

+

10 Sin@3 p tDSin@3 p xD
9 p 2

-

3 Sin@4 p tDSin@4 p xD
8 p 2

+

2 Sin@5 p tDSin@5 p xD
5 p 2

-
Sin@6 p tDSin@6 p xD

6 p 2
+

10 Sin@7 p tDSin@7 p xD
49 p 2

-

3 Sin@8 p tDSin@8 p xD
32 p 2

+

10 Sin@9 p tDSin@9 p xD
81 p 2

-

3 Sin@10 p tDSin@10 p xD
50 p 2  

 

somegraphs=
TableAPlot@Evaluate@uapprox@10DD,8x, 0, 1<, DisplayFunction ® Identity,

PlotRange®8- 3�2, 3�2<,
Ticks®880, 1<,8- 1, 1<<D,9t, 0, 2,

2
15
=E;

toshow = Partition@somegraphs, 4D;
Show@GraphicsArray@toshowDD  
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Appendix B: 

NumericalMa `BesselZeros` 
Solve[r D[r [R[r], r], r] +(r^ λ - m^2) R[r] � 0,

 
<< th
 D  D 2 R[r], r] 

 99R@rD® BesselJAm, r�!!!!l EC@1D+ BesselYA�!!!!Em, r l C@2D 
 {Series[BesselJ[m, x],{x,0,1}], Series[BesselY[m,x], {x,0,1}]} 

 

:xmikjj 2- m

Gamma@1+ mD+ O@xD2y{zz,
xm @D@ikjj- 2- m Cos m p Gamma - mD

p
+ O@xD2y{zz+

x- mikjj- 2m Gamma@mD
p

+ O@xD2y{zz>  
 {μ[0,1], μ[0,2], μ[1,1], μ[1,2],μ[3,3]} = FindRoot[BesselJ[#1, z] � 0, 
{z, #2}][[1,2]]&@@@{{0,2}, {0,5}, {1,4}, {1,7}, {3,13}} 
 {2.40483,5.52008,3.83171,7.01559,13.0152} 
 Show[GraphicsArray[Map[Show[{ParametricPlot3D[{r Cos[ϕ], r Sin[ϕ], #}, 
{ϕ,0,2Pi},{r,0,1}, PlotPoints→ 18, DisplayFunction→ 
Identity],ParametricPlot3D[{ Cos[ϕ], Sin[ϕ], 0, Thickness[0.02]}, 
{ϕ,0,2Pi}, DisplayFunction→ Identity ]}, Boxed→ False, Axes → False, 
DisplayFunction→ Identity]&,{BesselJ[0,μ[0,1]  r], BesselJ[0, μ[0,2] 
r], Cos[ϕ]  BesselJ[1,μ[1,1] r], BesselJ[1, μ[1,2] r]}, {1}] ]] 

 
 
Appendix C: 
<<NumericalMath`BesselZeros`•• 
\!\(α\_n_ := \ \(α\_n = \ \(BesselJZeros[0, {n, n}]\)[\([1]\)]\)\)•• 
c=7977.24;• 
rho=0.080;• 
f[r_]=r(r-1);•g[r_] = Sin[Pi*r];•• 
\!\(\(k\_n_ := \ \(k\_n = α\_n/rho\);\)\)•• 
\!\(\(a\_n_ := \(a\_n = \ \((•      2*NIntegrate[r*f[r]*•        
BesselJ[0, k\_n*r], {r, 0, rho}])\)/BesselJ[1, α\_n]^2\);\)\)•• 
\!\(\(b\_n_ := \ \(b\_n = \ \((2*•      NIntegrate[r*g[•        
r]*BesselJ[•            0, k\_n*r], {r, 0, rho}])\)/\((c*k\_n*BesselJ[1, 
α\_n]^2)\)\);\)\)••BesselJZeros[0,1]••{2.40483}••\!\(\(\(\[IndentingNewL
ine]\)\(Table[{n, α\_n, k\_n}, {n, •  1, 10}]\  // 
TableForm\)\)\)••\!\(\*•  TagBox[GridBox[{•        {"1", 
"2.404825557695773`", "24.04825557695773`"},•        {"2", 
"5.5200781102863115`", "55.20078110286312`"},•        {"3", 
"8.653727912911013`", "86.53727912911012`"},•        {"4", 
"11.791534439014281`", "117.91534439014282`"},•        {"5", 
"14.930917708487787`", "149.30917708487786`"},•        {"6", 
"18.071063967910924`", "180.71063967910925`"},•        {"7", 
"21.21163662987926`", "212.11636629879257`"},•        {"8", 
"24.352471530749305`", "243.52471530749307`"},•        {"9", 
"27.493479132040253`", "274.93479132040255`"},•        {"10", 
"30.634606468431976`", "306.34606468431974`"}•        },•      
RowSpacings->1,•      ColumnSpacings->3,•      RowAlignments->Baseline,•      
ColumnAlignments->{Left}],•    Function[ BoxForm`e$, •      TableForm[ 
BoxForm`e$]]]\)••\!\(\(λ\_n_ := \(λ\_n = \ 
c*α\_n/rho\);\)\)••\!\(Table[{\ n, α\_n, c*α\_n/rho}, \ {n, 1, 10}] // 
TableForm\)••\!\(\*•  TagBox[GridBox[{•        {"1", 

 23



"2.404825557695773`", "239798.38289841285`"},•        {"2", 
"5.5200781102863115`", "550437.3488062547`"},•        {"3", 
"8.653727912911013`", "862910.8056998781`"},•        {"4", 
"11.791534439014281`", "1.1757987523535285`*^6"},•        {"5", 
"14.930917708487787`", "1.488843924760714`*^6"},•        {"6", 
"18.071063967910924`", "1.8019651790922217`*^6"},•        {"7", 
"21.21163662987926`", "2.115128952366725`*^6"},•        {"8", 
"24.352471530749305`", "2.428318874924432`*^6"},•        {"9", 
"27.493479132040253`", "2.7415260183909596`*^6"},•        {"10", 
"30.634606468431976`", "3.0547451013029288`*^6"}•        },•      
RowSpacings->1,•      ColumnSpacings->3,•      RowAlignments->Baseline,•      
ColumnAlignments->{Left}],•    Function[ BoxForm`e$, •      TableForm[ 
BoxForm`e$]]]\) 
 
Bessel Code 
sValues[n_, {R_, a_}] := Table[s, {s, 0, ℓ[{R, a}], ℓ[{R, a}]/n}]•• 
φValues[n_, {R_, a_}] := φ[#, {R, a}]& /@ sValues[n, {R, a}]•• 
rValues[n_, {R_, a_}] := r[#, {R, a}]& /@ sValues[n, {R, a}] 
 
TrapezoidalIntegrateC = 
Compile[{{data, _Complex, 1}, {h, _Real}}, 
Module[{sum = 0. + 0. I}, 
       Do[sum = sum + data[[i]], {i, Length[data]}]; 
       h (sum - (First[data] + Last[data])/2.)]]; 
 
fourierMatrix[k_, o_, {R_, a_}, pp_] := 
Module[{h\[Delta] = N[\[ScriptL][{R, a}]/pp], rData, \[CurlyPhi]Data, 
sData, l1, l2, l3}, 
 
{rData, \[CurlyPhi]Data, sData} =  
  Developer`ToPackedArray[N[#[pp, {1, 1}]]]& /@    
                         {rValues, \[CurlyPhi]Values, sValues}; 
 
Do[l1[m] = Exp[N[I] m \[CurlyPhi]Data], {m, -o, o}]; 
Do[l2[n] = Exp[N[-2Pi I n  sData/\[ScriptL][{R, a}]]], {n, -o, o}]; 
(* use stable recursion toward m==0 *) 
l3[-o] = Developer`ToPackedArray[BesselJ[-o, k rData]]; 
l3[-o + 1] = Developer`ToPackedArray[BesselJ[-o + 1, k rData]]; 
(* use recursion formulas for BesselJ *) 
Do[l3[m] = 2. (m - 1.)/(k rData) l3[m - 1] - l3[m - 2], 
   {m, -o + 2, 0}]; 
l3[o] = Developer`ToPackedArray[BesselJ[o, k rData]]; 
l3[o - 1] = Developer`ToPackedArray[BesselJ[o - 1, k rData]]; 
(* use recursion formulas *) 
Do[l3[m] = 2. (m + 1.)/(k rData) l3[m + 1] - l3[m + 2], 
   {m, o - 2, 1, -1}];  
(* the table of integrals *)      
Table[TrapezoidalIntegrateC[l1[m] l2[n] l3[m], h\[Delta]],  
      {m, -o, o}, {n, -o, o}]]; 
 
With[{k = 1, l = 1, n = 1, R = 1, a = 0.859},  
NIntegrate[Evaluate[ 
         Exp[-2 Pi I n s/\[ScriptL][{R, a}]] Exp[I l \[CurlyPhi][s, {R, 
a}]] * 
         BesselJ[l, k r[s, {R, a}]]],  
         {s, 0, Pi, Pi + 2, 2 Pi + 2, \[ScriptL][{R, a}]}]] // Timing 
 
{0.441659 Second,2.73262\[InvisibleSpace]-4.40427 \[ImaginaryI]} 
 
det[k_?NumericQ, o_, {R_, a_}, pp_] :=  
      Det[fourierMatrix[k, o, {R, a}, pp]] 
 
Timing[mat = Table[{k, det[k, 2, {1, 1}, 301]}, {k, 0.1, 6, 1/30}];] 
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{50.2989 Second,Null} 
 
Show[Apply[Function[{reim, col}, 
     (* real part in red; imaginary part in blue *) 
     ListPlot[{#[[1]], reim[#[[2]]]}& /@ mat,  
               PlotJoined -> True, PlotStyle -> col, 
               DisplayFunction -> Identity]], 
     {{Re, {Hue[0]}}, {Im, {Hue[0.8], Dashing[{0.01, 0.01}]}}}, {1}], 
     DisplayFunction -> $DisplayFunction,  
     PlotRange -> {-1, 1}, Frame -> True, Axes -> False] 
 
startPairsN = {{1.7, 1.8},{2.1, 2.2},{2.8,3.0}} 

{{1.7,1.8},{2.1,2.2},{2.8,3.}} 
 
kRoots = (k /. FindRoot[Re[det[k, 2, {1, 1}, 301]],  
      Evaluate[{k, Sequence @@ #}], 
             MaxIterations -> 30, AccuracyGoal -> 10])& /@ startPairsN 
 

{1.77792,2.1661,2.84605} 
 
fourierMatrices =  
 Transpose[fourierMatrix[#, 2, {1, 1}, 301]]& /@ kRoots; 
 
nontrivialHomogeneousSolutions =  
  NullSpace[#, Tolerance -> 0.1][[-1]]& /@ fourierMatrices;  
\[CapitalPsi][{r_, \[CurlyPhi]_}, k_, v_] := v.Table[BesselJ[l, k r] 
Exp[I l \[CurlyPhi]], 
                   {l, -(Length[v] - 1)/2, (Length[v] - 1)/2}] 
eigenfunctionPicture[k_, v_, {pp\[CurlyPhi]_, ppr_}, col_, opts___] := 
Module[{points, polys, boundary}, 
 
boundary = {Thickness[0.01], GrayLevel[0], 
            Line[Table[1.006 r[s, {1, 1}]* 
                    {Cos[\[CurlyPhi][s, {1, 1}]], Sin[\[CurlyPhi][s, {1, 
1}]], 0}, 
                       {s, 0, 2Pi + 4, (2Pi + 4)/501}]]}; 
 
points = Table[\[Rho] = N[\[Alpha] r[s, {1, 1}]]; \[Phi] = 
N[\[CurlyPhi][s, {1, 1}]]; 
      {\[Rho] Cos[\[Phi]], \[Rho] Sin[\[Phi]], 
Re[\[CapitalPsi][{\[Alpha] \[Rho], \[Phi]}, k, v]]},  
      {s, 0, \[ScriptL][{1, 1}], \[ScriptL][{1, 1}]/pp\[CurlyPhi]}, 
{\[Alpha], 0, 1, 1/ppr}]; 
 
polys = Table[Polygon[{#[[i, j]], #[[i, j + 1]], #[[i + 1, j + 1]],  
                       #[[i + 1, j]]}&[points]], {i, pp\[CurlyPhi]}, {j, 
ppr}]; 
(* show graphics *) 
Show[Graphics3D[{boundary, EdgeForm[], col, polys}], opts, 
     PlotRange -> All, Boxed -> False, BoxRatios -> {4, 2, 1}]] 
Show[GraphicsArray[ 
Table[eigenfunctionPicture[kRoots[[k]],  
        nontrivialHomogeneousSolutions[[k]], {201, 101}, 
        SurfaceColor[Hue[k/4], Hue[k/4 + 0.4], 2.8], 
                    DisplayFunction -> Identity], {k, 3}]]] 
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[Lambda] = {1.777917044847115`,2.1660952637765187`,2.846053213908279`, 
3.137975964274985`, 3.405413536789092`, 3.8814401597332533` } 
 
c = 7977.24; 
 
Table[{ \[Lambda], c*\[Lambda]/.063}]// TableForm 
\!\(\* 
  TagBox[GridBox[{ 
        {"1.777917044847115`", "2.1660952637765187`", 
"2.846053213908279`"}, 
        {"225124.935981527`", "274277.1711429936`", 
"360375.3895256775`"} 
        }, 
 Table[{ \[Lambda], c*\[Lambda]/.070}]// TableForm 
 
TagBox[GridBox[{ 
        {"1.777917044847115`", "2.1660952637765187`", 
"2.846053213908279`"}, 
        {"202612.44238337426`", "246849.45402869422`", 
"324337.8505731097`"} 
         
TagBox[GridBox[{•      {"3.137975964274985`", "3.405413536789092`", 
"3.8814401597332533`"},•        {"397339.4822421108`", 
"431203.1917811971`", "491479.04285445233`"}   
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Appendix C: 
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