Skip to main content
College of Arts and Sciences

Phil Richerme

Assistant Professor
Atomic Physics (Experimental)

B.S., Massachusetts Inst. of Technology, 2006
M.A., Harvard University, 2008
Ph.D., Harvard University, 2012
Postdoctoral Position: Joint Quantum Institute, College Park, MD

Office: Swain West 304
Phone: (812)-856-1488
Email: richerme at

Curriculum Vitae
Group Webpage

My research interests lie at the intersection of atomic physics and quantum information, where collections of cold, trapped ions can serve as well-isolated systems for studying quantum many-body physics or as a new computational resource for solving classically intractable problems. Each trapped ion encodes a quantum spin, and lasers provide the "connections" to couple the spins together. I am particularly interested to investigate new ion trap geometries and methods to realize 2D and 3D spin lattices, which can exhibit important physics that is inaccessible to the current 1D systems. Scaling these systems to hundreds of coupled spins (and beyond) will likely require construction of cryogenic traps, which will provide the ions exquisite isolation from their background environments.

Selected Publications

  • Many-body localization in a quantum simulator with programmable random disorder
    J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P.W. Hess, P. Hauke, M. Heyl, D.A. Huse, and C. Monroe
    arXiv:1508.07026 (2015).
  • Realization of a Quantum Integer-Spin Chain with Controllable Interactions
    C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, and C. Monroe.
    Phys. Rev. X. 5, 021026 (2015).
  • Non-local propagation of correlations in quantum systems with long-range interactions
    P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, and C. Monroe.
    Nature 511, 198 (2014).
  • Coherent Imaging Spectroscopy of a Quantum Many-Body Spin System
    C. Senko, J. Smith, P. Richerme, A. Lee, W. C. Campbell, and C. Monroe.
    Science 345, 430 (2014).
  • Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator
    P. Richerme, C. Senko, S. Korenblit, J. Smith, A. Lee, W. C. Campbell, and C. Monroe.
    Phys. Rev. Lett. 111, 100506 (2013).
  • Experimental Performance of a Quantum Simulator: Optimizing Adiabatic Evolution and Identifying Many-Body Ground States
    P. Richerme, C. Senko, J. Smith, A. Lee, and C. Monroe.
    Phys. Rev. A. 88, 012334 (2013).
  • Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies
    P. Richerme, G. Gabrielse, S. Ettenauer, R. Kalra, E. Tardiff, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, A. Muellers, and J. Walz.
    Phys. Rev. A. 87, 023422 (2013).
  • Trapped Antihydrogen in Its Ground State
    G. Gabrielse, R. Kalra, W.S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinkski, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, A. Muellers, and J. Walz.
    Phys. Rev. Lett. 108, 113002 (2012).