Shifting ontological boundaries: how Japanese- and English-speaking children generalize names for animals and artifacts

Hanako Yoshida\(^1\) and Linda B. Smith\(^2\)

1. Department of Psychology, Indiana University, USA
2. Department of Psychology and Program in Cognitive Science, Indiana University, USA

Abstract

Past research shows that young language learners know something about the different category organizations of animals, objects and substances. The three experiments reported here compare Japanese-speaking and English-speaking children’s novel name generalizations for two kinds of objects: clear instances of artifacts and objects with ambiguous features suggestive of animates. This comparison was motivated by the very different nature of individuation in the two languages and by the boundary shift hypothesis that proposes that entities that straddle the individuation boundary of a language are assimilated toward the individuated side. The results of the three experiments support the hypothesis. An explanation in terms of mutually reinforcing correlations among language, perceptual properties and category structure is proposed.

Our perceptions and our interactions with objects tell us that there are different kinds of things in the world. There are animate things that react and intentionally move; there are discrete things with stable forms that we move; and there are substances, masses with less regular and more variable forms. This partition of things into animals, objects and substances is sometimes considered an ontological partition, in two senses: in the Aristotelian sense that these are three different kinds of existence and in the psychological sense that these are distinct psychological kinds that provide a foundation for human category learning.

In this paper, we propose that the language one learns influences – perturbs slightly but measurably – the boundaries between the psychological categories of animal, object and substance. We present evidence for this idea in three studies of how young children learning Japanese and young children learning English generalize names for things with ambiguous perceptual properties. We concentrate on ambiguous forms not because there are many such entities in the world, but because children’s conceptualizations of ambiguous forms provide insight into their expectations about categories and the mechanisms that create these expectations. Similarly, we study children acquiring two different languages, not solely because of an interest in cross-cultural effects, but primarily as a window onto the mechanisms of development. The larger idea behind this work is that ontological kinds may be the product of statistical regularities among perceptual properties and among these properties and language. We specifically consider this idea in the General discussion.

Two issues that have generated much interest and evidence in the literature motivate the experimental hypotheses: (1) the different ways various languages mark individuals and (2) children’s expectations about lexical categories.

Individuation

Lucy (1992) proposed an individuation continuum that is intimately related to ontological distinctions among animates, objects and substances. This continuum, with animates at one end and substances at the other, orders kinds by the degree to which instances are marked as individuals with devices such as the plural and indefinite articles.

English with its count/mass distinction is said to partition the continuum between objects and substances. Count nouns are nouns that can take the plural (e.g. dogs, cups); mass nouns are not pluralized (e.g. milk)
but take continuous quantifiers such as *some* and *much*. Conceptually, then, count nouns seem to refer to entities that are discrete; one can have *one cup* or *two cups*, but not *much cup* as a portion of a cup is not a cup. Conceptually, mass nouns seem to refer to entities that are continuous and unbounded. One can have *much milk* or *little milk*, and either way it is milk.

Importantly, the likelihood that a particular entity is conceptualized as bounded and discrete, and thus is referred to by a count noun, varies systematically across the continuum from animates to substances. Animates and most complex objects are referred to by count nouns, virtually without exception. However, some entities, for example, muffin, can be conceptualized either as a bounded entity or a continuous mass and thus may be referred to using count (*a muffin*) or mass (*some muffin*) syntax. Finally, other entities such as water and milk are typically conceptualized as continuous masses and thus are referred to by mass nouns. But substances can also be conceptualized in discrete portions and in these cases discrete quantifiers are added (e.g. *a cup of milk*, *a puddle of water*) to indicate the boundedness of the referred to entity. The two key points are these: First, the ontological continuum is not partitioned into equivalent categories of individuals and nonindividuals. Instead, some kinds are always treated as bounded and discrete and others only sometimes accorded this privilege. Second, English treats animates and complex objects in the same way, as individuals, and the likelihood of being treated as an individual falls sharply as one moves on the continuum from objects to substances.

Japanese also includes lexical and syntactic devices relevant to individuation that are intimately related to the continuum from animates to substances. The nature of this relation, however, is different from English. First, Japanese nouns that refer to multiple entities are not obligatorily pluralized. Thus *im-ga-tta* could be used to mean either ‘there was a dog’ or ‘there were many dogs’. Second, nouns referring to multiple humans or young animals are optionally pluralized with the suffix *-tachi*. Thus, *koimu-tachi-ga-ita* is ‘there were some puppies’. The plural suffix appears not to be used on inanimate nouns. Third, animates, objects and substances can be referred to as discrete and bounded by adding discrete quantifiers, just as English does for substances. There are unique quantifiers for animates but the quantifiers used for objects and substances can form an overlapping set. Thus the Japanese system of pluralization and quantifiers contrasts with that of English in that it distinguishes animates from complex objects and substances.

There is an additional distinction in Japanese that appears closely related to individuation and that is also organized by the continuum from animates to substances. This is the distinction between *iru* and *aru* in locative constructions. For the fundamental notion of existence (*there is*) and spatial location (*be located*), Japanese has separate verbs for animates and inanimates: *aru* is ‘animate object exists/is located’ and *iru* is ‘animate object exists/is located’. Contexts in which one uses *iru* overlap with contexts in which one uses the plural *-tachi*. Thus, both the plural, *-tachi*, and *iru* privilege animate forms. Both are also sometimes extended to inanimates. For example, *dolls* are normally conceptualized as inanimate objects but they also can be conceptualized as pretend animates. In these contexts, *iru* is used and the noun may be pluralized by *tachi* (e.g. *ningyou-tachi ga ippai iru* – there are many dolls). It is rare (but possible) for other artifacts to take these forms (e.g. *taxi ga iru* – there is/is an taxi(co)). These forms do not appear to be used for substances. Again, then, we see a graded function relating individuation to ontological kinds. However, the function is different for Japanese than for English; the likelihood of treating an object as an individual drops markedly between animates and objects in Japanese whereas in English it drops markedly between objects and substances.

Both Quine (1969) and Lucy (1992) have suggested that such language differences influence the ontological distinctions made by speakers of the language. The evidence from children's formation of new lexical categories suggests they may be partially right.

Children’s expectations about lexical categories

One task that has been used to study children's expectations about ontological distinctions is the novel noun generalization task. In this task, experimenters present children with an entity and name it with a novel name, for example, *this is the mel*. The experimenter then presents other test stimuli and asks the child which of these is called by the same name, for example, *show me the mel*. This is an interesting task because the naming event itself provides the child with few constraints on the class to which the name applies. Thus, children's generalizations from this minimal task input provide insights into children's expectations about how nouns map to categories.

In an important series of experiments, Soja and colleagues (Soja, Carey & Spekler, 1991; Soja, 1992) used this task to investigate English-speaking children's expectations about object and substance categories. When a novel solid and rigidly shaped thing was named, 24- and 30-month-old children generalized the name to new instances by shape. In contrast, when a novel nonsolid substance was named, children were less likely to attend
to shape and more likely to extend the name to new instances by material. Although Soja (1992) found that the children were sensitive to whether the novel noun was presented in a count frame (a *mel*) or a mass frame (*some mel*), the solidity of the named substance was the dominant force on children’s extensions of the name. Soja and colleagues interpreted these results as supporting a pre-linguistic basis to the ontological distinction, a distinction, then, that does not rest entirely on syntactic knowledge.

This conclusion was also supported but refined in important ways by a subsequent cross-linguistic study conducted by Imai and Gentner (1997). Using a task similar to that used by Soja, they compared Japanese-speaking and English-speaking children’s generalizations of names for novel objects and novel substances. However, they used three kinds of exemplars: solid and complexity shaped things, solid but simply shaped things, and nonsolid and thus simply shaped substances. Simple solids present an interesting case because they are ambiguous, like complex objects in their solidity but like nonsolid substances in the uniformity of their material and simplicity of their shape.

Imai and Gentner’s results are consistent with the idea that English- and Japanese-speaking children conceptualized these ambiguous forms – the simple solids – in different ways. That is, if name extensions by shape indicate that children saw the entity as bounded and discrete, then English-speaking children conceptualized both the complex and simple solids as discrete objects. Specifically, English-speaking children consistently generalized the names for solid complex and solid simple forms by shape (but generalized the names for nonsolid substances equally often by shape and material). In contrast, and again if shape extensions indicate the conceptualization of the entity as discrete and bounded, the Japanese-speaking children conceptualized only the complex solid objects as discrete things. They consistently generalized names for completely shaped solids by shape but generalized names for simply shaped solids equally often by shape and material and they generalized names for nonsolids mostly by material. Thus English-speaking children seem to accept a broader range of things (complex and simple solids) as named by shape whereas Japanese-speaking speakers accept a narrower range (complex but not simply shaped objects). In this way, the boundary between objects and substances seems to be in different places for children learning the two languages.

The boundary shift hypothesis

We propose that this shift is the product of interactions among three layers as illustrated in Figure 1. The bottom layer is a continuum of objects, ordered by their perceptual properties, from those exhibiting properties most characteristic and diagnostic of animacy to those characteristic of rigid and complex artifacts to those characteristic of nonsolid substances. The perceptual properties presented by these entities correlate with and are predictive of the conceptual distinctions between animate, inanimate and substance at the next level. Evidence from Soja (Soja *et al.*, 1991; Soja, 1992) and Imai and Gentner (1997) as well as others (Massey & Gelman, 1988; Mandler, Bauer & McDonough, 1991; Yoshida & Smith, 2001) indicates that young children are aware of these correlations between perceptual properties and ontological kinds. Finally, at the top, is the linguistic layer which represents the likelihood function with which linguistic devices mark entities as individuals.

We propose that these layers influence each other and more specifically that linguistic knowledge may alter how perceptual information is weighted and conceptualized. We suggest that English-speaking children treat simply shaped solids as objects namable by shape whereas Japanese-speaking children do not because the two groups of children attend differently to the properties of simply shaped solids. We specifically suggest that English-speaking children attend to the solidity and thus conceptualized the simple solids as objects whereas Japanese-speaking children attend less (or less consistently) to the solidity (and perhaps more to the simplicity of the shape) and thus were more likely than English-speaking children to conceptualize simple solids as substances. This then is the boundary shift hypothesis: the likelihood function relating things in the world to the conceptual categories of object and substance is shifted slightly in Japanese relative to English.

There are two ways to think about this hypothesized shift. One possibility is that the structure of Japanese increases the likelihood that simple objects are treated as substances. The other possibility is that the structure of English shifts the function and causes solid substances
to be objectified. We favor the second alternative, that English shifts the boundary. Our reasoning is this: As illustrated in Figure 1, simply shaped solid entities such as a chunk of wood fall near the individuation boundary in English but far from it in Japanese. Accordingly, we propose that solid substances are conceptualized as objects by English speakers because they fall near the individuation boundary, that is, correlations between perceptual properties and linguistic devices relevant to individuation enhance those perceptual properties characteristic of individualized entities and make them more perceptually potent. Thus, cues associated with complex objects (such as solidity) are more potent cues to ontological kinds for speakers of English because solidity is associated with entities that are typically treated as discrete individuals. Put another way, we propose that entities presenting ambiguous perceptual cues that fall near the boundary will be assimilated to the more individualized kind. In the General discussion, we will discuss this idea and the mechanisms that may be responsible for such a phenomenon more thoroughly. The purpose of the present study is to test the generality of such an assimilation effect.

We ask: Is the assimilation of kinds near the individuation boundary to the individualized side a general principle? If it is, then we should see a similar phenomenon at the individuation boundary for Japanese. The individuation boundary in Japanese is between animates and inanimates. Thus, we ask about Japanese children: Are objects that are ambiguous with respect to animacy assimilated toward the individuated end of the continuum? Put another way, are ambiguously animate things more likely to be conceptualized as animates by Japanese-speaking children than by English-speaking children?

Animal-like and artifact categories

Our approach to answering this question is based on past proposals and evidence that animal and artifact categories differ in their perceptual organization. This has been suggested by a number of researchers, including Markman (1989), Jones, Smith and Landau (1991), Gelman and Coley (1991), Keil (1994) and Jones and Smith (2002). Each of these investigators has suggested that animal categories are richly structured by being based on multiple similarities, whereas artifact categories are more simply structured and are based principally on shape. In support of this idea, Jones and Smith (2002) found that adults judged animal categories to be well organized by similarities in shape and texture whereas they judged artifact categories to be well organized by shape alone. Jones et al. (1991; also Jones & Smith, 1998) showed that English-speaking children respect these regularities in their novel noun generalizations. They presented 3-year-olds with novel objects with and without properties typical of animate things such as eyes, and they named these objects with novel names. Three-year-olds systematically generalized the names for objects without animacy features by shape but just as systematically generalized the names for objects with animacy features by multiple similarities (in the Jones et al. studies, by joint similarity in shape and texture). In other words, the children formed narrower animal categories than object categories, extending names for things with animacy features only to objects that matched the exemplar on multiple properties.

More recently Yoshida and Smith (2001) showed that Japanese-speaking children's novel noun generalizations also honor these differences in the similarity structures of animal and artifact categories. Specifically, Japanese-speaking children like the English-speaking children in Jones et al. (1991) generalized names for novel forms with eyes to new instances that matched the exemplar on multiple similarities. Interestingly, Yoshida and Smith also reported that Japanese-speaking children showed this 'eye-effect' at a younger age than did English-speaking children. This last finding fits the idea that Japanese-speaking children might show a heightened sensitivity to cues indicative of animates.

We use this same task in the present experiments. However, unlike the earlier studies, we present Japanese-speaking and English-speaking children with objects that present ambiguous cues. The rationale behind the experiments is this: If children conceptualize an object as depicting an animate thing, they should generalize the name for that object to new instances narrowly, requiring matches on multiple dimensions, not just shape. In contrast, if children conceptualize a named thing as an artifact, they should generalize the name broadly to anything that matches the original in shape. The key prediction is that Japanese- and English-speaking children should differ in the range of things they conceptualize as animate. If forms close to the individuation boundary in a specific language are assimilated toward the individuated side of the boundary, then ambiguous objects with features suggestive of animate things should be near the individuation boundary and treated as animates by Japanese-speaking children just as simply shaped solids are near the individuation boundary for English-speaking children and treated as objects.

If simple solid forms are ambiguous entities that could be thought of as either objects or substances, what are ambiguous entities with respect to animacy? We suggest that dolls, toy animals and statues are ambiguous in that in some contexts we treat them as clearly artifacts...
and in others as the animate things they depict. Indeed, past research using the novel name generalization task has examined only artificial representations of animate things. And from these studies we know features such as eyes that are strongly correlated with animacy cause children to form categories based on multiple similarities and not just shape. Accordingly, in the present studies we use objects with cues suggestive of animacy, but cues much more subtle and ambiguous than eyes.

Experiments and rationale

In sum, we test the boundary shift hypothesis by examining young Japanese-speakers' and young English-speakers' novel noun extensions. We present the children with novel entities presenting ambiguous perceptual cues. If the children conceptualize a novel thing as depicting an animate entity, they should generalize its name to new instances conservatively, requiring multiple similarities. If, however, they conceptualize the novel thing as depicting an artifact object, they should generalize its name broadly to all new instances that match the exemplar in shape. Our prediction is that Japanese- and English-speaking children will differ in how they generalize names for ambiguous depictions of animate things.

This prediction requires, however, that Japanese-speaking children have sufficiently acquired the linguistic distinctions that privilege animates as individuals. Of all the distinctions in Japanese that focus on animacy, we choose to concentrate on the iru/aru distinction in locative constructions. Based on the fundamental notions of existence ('there is') and spatial location ('be located'), this distinction seems a likely powerful force on the way Japanese-speaking children think about objects. In English we use the same verb 'be' for both a dog and a cup, saying: *there is a dog and there is a cup*. However, the Japanese verb *iru* should be used for a dog, and *aru* should be used for a cup. *Iru* implies being in a place by one's own will. *Aru*, on the other hand, implies 'having been left' at a place. Importantly, *iru* is used whenever one attributes intention or/and self-controllability, for example, for dolls and stuffed toys in play and for people and animals (Arai, 1997; Kinsui, 1984). Thus every time a Japanese-speaking child refers to the location of an object, the child must decide if the object is to be conceptualized as animate or inanimate.

We test young Japanese-speaking children's understanding of the implications of *iru/aru* in Experiment 1 and also show that our ambiguous entities are ambiguous – that they can be conceptualized by Japanese-speaking children as either animate or inanimate. We compare Japanese- and English-speaking children's name extensions for these ambiguous things in Experiment 2 and for unambiguous things (clear artifacts) in Experiment 3. In all the experiments, we used a 'yes/no' version of the novel name generalization task. In this task the child is shown an exemplar, and told its name. Then the child is presented with test objects individually and asked about each one 'Is this a ___?' Although this 'yes/no' procedure has been used in previous studies (e.g. Jones et al., 1991, Jones & Smith, 1998) it is not the form of the task most commonly used. Instead most studies employing the novel noun generalization task use a forced-choice procedure in which children must pick between test objects – between one that matches the exemplar in shape only, for example, and one that matches in material only (e.g. Soja, 1992; Imai & Gentner, 1997). The problem with the forced-choice procedure is that it forces the child to choose between two objects that may both be acceptable or unacceptable instances of the category. This is particularly problematic for studying differences among kinds of categories across languages since some of the relevant differences may lie in the narrowness versus breadth of generalization to new instances.

Experiment 1

Experiment 1 has two purposes. The first is to demonstrate Japanese children's sensitivity to one potentially powerful lexical distinction that partitions animate from inanimate things: the *iru/aru* distinction in locative constructions. The second is to show that the stimulus objects do present ambiguous perceptual cues that could be seen as depicting either animate or inanimate things. To these ends, we presented Japanese-speaking children with a novel entity with protruding pipe cleaners vaguely suggestive of arms and legs. We named the object with a novel name using a construction that required either *iru* or *aru*: "There is a ___." If children are sensitive to the implications of *iru*, then the children in that condition should conceptualize the exemplar as animate and generalize the novel name to new instances narrowly, requiring similarities across several dimensions and perhaps, as Jones et al. (1991) found, particularly across shape and texture. If children are sensitive to the implications of *aru*, then children in that condition should conceptualize
the exemplar as inanimate and they should broadly generalize its name to all objects that match the exemplar in shape. Such a result would demonstrate both the children’s knowledge of one linguistic form that privileges animates and also the ambiguity of the stimulus objects.

Method

Participants

We recruited 20 monolingual Japanese-speaking children from nurseries in Niigata, Japan. There were two conditions between subjects: the Iru condition and the Aru condition. There were 10 children in each condition, with an equal number of male and female participants. Children’s mean age in the Iru condition was 35.01 months, range 27.56 to 39.70 months; and children’s mean age in the Aru condition was 34.17 months, range 26.16 to 39.80 months.

Stimuli

There were three stimulus sets, a pre-training set and two test sets. Each set contained one exemplar, unique to that set, which was named with a novel name. The exemplar for the pre-training set was made of orange cardboard shaped in a cone and named ‘mobito’. Four test stimuli were used during pre-training; two were identical in all respects to the exemplar, two were different in all respects from the exemplar. One of these was a blue sponge in a trapezoidal shape, and the other was plastic mesh roughly in the shape of a U.

The two experimental sets consisted of an exemplar and six test objects. The exemplars are illustrated in Figure 2. The keppuru exemplar was made of red clay, and the tema exemplar was made from pink sponge. Six test objects were constructed for each exemplar. Three matched the exemplar on multiple dimensions: (1) shape, color and texture (sh+tx+co), (2) shape and texture (sh+tx) and (3) shape and color (sh+co). Three matched the exemplar on a single dimension: (1) shape (sh), (2) texture (tx) and (3) color (co). The constrasting shapes, colors and textures differed significantly from the exemplar and included objects made out of tinsel, paper and straw as well as sponge and hardened clay. All objects in the pre-training set, the keppuru set and the tema set had four appendages made of pipe cleaners. All objects were 3-dimensional, approximately 7 cm × 7 cm × 7 cm in size.

Design and procedure

The experimental session began with the pre-training set to help children understand that they may say ‘yes’ to some items and ‘no’ to others and to ensure the children understood the task. The pre-training sets were structured so as not to bias attention to any particular property (that is, one test object in the pre-training set was identical to the pre-training exemplar and the other two differed from the exemplar substantially on all other properties). The pre-training exemplar was named, ‘There is a mobito’ using either Iru or Aru according to the condition to which the child was assigned. The child was given the object to hold and examine for approximately 30 sec. The experimenter then took the exemplar back and named it again. The child was presented with
test objects individually that either were identical to the pre-training exemplar or differed from it on all properties and the child was asked, 'Is this a mobito?' Children were allowed to handle these items before making their judgments and handed them back to the experimenter after responding. This continued until the child answered three questions correctly or for a maximum of eight trials. Feedback was provided on all pre-training trials and only children who passed these pre-training trials proceeded to the experiment proper. All but two children who were replaced did so.

The experimental trials were identical in structure to the pre-training trials with the exception that no feedback of any kind was provided and each exemplar was named with a unique name. The exemplars were presented in the following sentence frames in the Iru and Aru conditions, respectively: 'Koko-ni____-ga iru-yo' and 'Koko-ni____-ga aru-yo'. Test objects were queried as follows in the Iru and Aru conditions respectively: 'Koko-ni____-ga iru-kana?' and 'Koko-ni____-ga aru-kana?'

Each of the six test objects for each of the two exemplars was queried twice for a total of 24 trials (four trials for each kind of test object). All the questions about the name of one exemplar were asked in a block. The order of the blocks (keppuru exemplar and tema exemplar) was counterbalanced across children and the questions within each block were presented in one of two randomly determined orders.

Results and discussion

Figure 3 shows the proportion of 'yes' responses to the questions as a function of condition and test objects. These responses were submitted to an analysis of variance for a 2 (Condition) × 2 (Multiple vs. Single property match) mixed design. The analysis revealed a main effect of Condition, $F(1, 18) = 6.93, p < 0.02$. As predicted, children in the Aru condition (which implies an inanimate exemplar) generalized the name to more test objects than children in the Iru condition (which implies an animate exemplar). The analysis also revealed a main effect of Multiple- versus Single-property matches, $F(1, 18) = 243.92, p < 0.001$. As expected, children overall were more likely to generalize the name to new instances that matched on multiple properties than to new instances that matched on just one property.

The meaning of this pattern of results is clarified by comparing children's proportion of 'yes' responses, the name of the exemplar applies to the test object, to the proportion of 'yes' responses expected by chance ($p < 0.05$, two-tailed) for each kind of test object. As indicated in Figure 3, children in the Iru condition generalized the exemplars' names conservatively – only to objects that matched the exemplar in all properties and to objects that matched in both shape and texture. In contrast, children in the Aru condition more broadly generalized the exemplars' names to objects that matched the exemplars in shape regardless of whether they matched on other properties. The one exception to this in the Aru condition was with the test objects matching in shape and color. Children in the Aru condition did not generalize the name to that test object reliably more often than expected by chance. This is due to two children who rejected the shape + color matching test object on nearly every trial (our best explanation of these two individuals' behaviors is that they found the surface textures of particular shape + color test objects to be too different from the exemplar to be acceptable). The remaining eight children in the Aru condition accepted these test objects as instances of the lexical category over 75% of the time.

Overall, then, children's performance in the Iru condition fits what is expected if children interpret the named exemplar as depicting an animate thing and if they generalize names for animate things conservatively, by joint similarity in texture and shape. And Japanese-speaking children's performance in the Aru condition fits what is expected if they view the named object as an artifact and if they generalize names for artifacts by shape. Japanese-speaking children's categorization of these objects by texture and shape in the context of ired and by shape in the context of aru extends Jones and colleagues' (1991) and Yoshida and Smith's (2001) previous findings that
the perceptual cue of eyes causes children to form categories based on multiple similarities. These results show that whether an object is conceptualized as an animal, does not depend on perceptual properties alone but is also influenced by linguistic cues.

Before accepting this conclusion, however, we considered another possibility suggested by the fact that Japanese does not distinguish proper from common nouns. *Mobito* in *koko ni mobito-ga iru*-(yo) (There is a mobito) could be either the name of the kind of thing (a chair) or a proper name (John). Perhaps, then, Japanese-speaking children as a group in the Aru condition did not interpret the exemplar as depicting an animal and generalize the name by multiple similarities. Rather, some children in the context of *iru* might have interpreted the name as a proper name generalizing it only to the item that matched the exemplar in all properties. Other children might have interpreted it as a common name of an artifact and generalized that name by shape. The group pattern then would misleadingly fit our expectations. Accordingly, we examined the performances of individual children. We counted the number of children who said ‘yes’ more than 75% of the time to items matching the exemplar on all properties, but said ‘no’ more than 75% of the time to all other test objects (*p* = 0.011 that an individual child would show this pattern by chance alone). This is the pattern expected if children interpret the name as the proper name of the exemplar. There was one child who fit this possible interpretation in the Iru condition and one in the Aru condition. We also counted the number of children who said ‘yes’ more than 75% of the time only to the items matching the exemplar in shape and texture, the pattern consistent with the conceptualization of the exemplar as a depiction of an animate thing (again, *p* = 0.011 that an individual child would show this pattern by chance alone). Seven of the ten children in the Iru condition generalized the name to test objects (*p* = 0.011 that an individual child would show this pattern by chance alone). This is the pattern expected if children interpret the name as the proper name of the exemplar. There was one child who generalized the name by shape.

Experiment 2

The primary question for Experiment 2 is whether English- and Japanese-speaking children differ in their conceptualization of these ambiguous stimuli when the carrier sentence is neutral and suggests neither the animacy nor the inanimacy of the named object. If learning a language which ties individuation to animacy fosters the conceptualization of ambiguous kinds near the animacy/inanimacy boundary as individuals (and thus animates), then Japanese-speaking children more than English-speaking children should view our ambiguous exemplars as depicting animate kinds. Put another way, we ask: Does a history of using *iru* and *aru* as they generalize names presented in carrier sentences with these verbs differently. Second, the results tell us that linguistic cues, at least explicitly presented ones, can alter how the same perceptual entity is conceptualized – as a depiction of an animate or artifact kind. Third, this experiment provides evidence for the ambiguity of these stimulus objects, a crucial fact for Experiment 2. Japanese-speaking children can ‘see’ these objects with pipe-cleaners in two ways, as animals in the linguistic context of *iru* and as artifacts in the linguistic context of *aru*. Indeed, the differing impact of *iru* and *aru* on children’s conceptualizations of these objects may depend critically on the ambiguity of the perceptual properties. Previous work shows that *iru* and *aru* do not alter Japanese-speaking children’s conceptualization of less ambiguous objects. Yoshida, Swanson, Drake and Gudel (2001) presented Japanese-speaking children with objects with more potent cues to animacy, eyes, and named them in the context of *iru* or *aru* just as in this experiment. Japanese-speaking children generalized the names for these objects in the same way in both linguistic contexts, that is, to objects similar to the named exemplar in both shape and texture. Thus, the stimulus objects used in Experiment 1, and also in Experiment 2 are, at the least, more ambiguous than ones with eyes.
Method

Participants

Ten monolingual English-speaking children between the ages of 25 and 39 months and 10 Japanese-speaking children between the ages of 25 and 37 months participated. The English-speaking children’s mean age was 33.41 months, and the Japanese-speaking children’s mean age was 32.29 months. The English-speaking children were tested in Bloomington, IN and the Japanese-speaking children were tested in Niigata, Japan. No child had participated in Experiment 1 and all children met the pre-training criterion.

Stimuli, materials, design and procedure

All aspects of the stimuli, procedure and design were identical to Experiment 1 with the exception of the sentence frames in which the novel names were presented. The sentence frames used in Japanese were non-locative constructions that did not require *iru/aru* but rather the same sentence frame could be used with both animates and inanimates. When naming the exemplar, the experimenter said ‘Kore-wa___da-yo’, roughly ‘This ___ is’. When asking children whether the object could be called the same name as the exemplar, the experimenter said ‘Kore-wa___-kana?’ which is roughly, ‘This ___ is?’ In English, when naming the exemplar, the experimenter said ‘This is a ___’ and when asking about the test objects, the experimenter said ‘Is this a ___?’. The novel words employed to name the exemplars in Experiment 2 were also slightly altered for the English-speaking children to sound natural in English (e.g. mobito/mobit; keppuru/kipple; tema/teema).

Results and discussion

The number of ‘yes’ responses was submitted to an analysis of variance for a 2 (Language) × 2 (Multiple- versus Single-property matching test objects) mixed design. The analysis revealed a main effect of Language, $F(1, 18) = 20.63$, $p < 0.001$. English-speaking children said ‘yes’ more often than did Japanese-speaking children, generalizing the exemplars’ names more broadly to more test objects than did the Japanese-speaking children. The analysis also revealed a reliable main effect of Multiple- versus Single-property matches, $F(1, 18) = 165.40$, $p < 0.001$. Both groups of children generalized the name more to test objects that matched the exemplar in multiple properties than to test objects that matched the exemplar in just one. Finally, the analysis yielded a non-reliable interaction between Language and...
children formed a broader category based on shape, a pattern consistent with the interpretation of these things as artifacts. We predicted these effects as a consequence of the differences in the English and Japanese systems of individuation. One might question, however, whether the effect derives not from differences in the children's history of language learning but rather from differences in their history of visual experiences, perhaps in the iconography with which animates are depicted in the two cultures. Although it is impossible to rule out cultural effects that are independent of language, we know of no cultural differences in iconography that seem relevant to pipe-cleaner protrusions. Further, Experiment 1 clearly shows that Japanese-speaking children can ‘see’ these objects as artifacts in the context of a relevant linguistic cue. Finally, this pattern of results is consistent with earlier findings by Yoshida and Smith (2001); they found that young Japanese-speaking children show an earlier sensitivity than do English-speaking children to the more potent animacy cues of eyes in novel noun generalization tasks. In brief, the present results support the idea that Japanese-speaking children have a heightened sensitivity to potential animacy cues. The consequence of this heightened sensitivity is that Japanese-speaking children treat objects near the animate-object boundary differently than do English-speaking children. As such, the results are comparable to Imai and Gentner’s (1997) findings that English-speaking and Japanese-speaking children treat objects near the object–substance boundary differently. Together, the two sets of results suggest that the individuation boundary in a language exerts a force on children's conceptualizations of ambiguous kinds. More specifically, ambiguous kinds appear to be pulled toward the more individuated form.

Experiment 3

Before we accept this conclusion, however, we need to make sure that Japanese- and English-speaking children only differ given suggestive animacy cues and not given any kind of stimulus object. That is, one possible interpretation of Experiment 2 is that Japanese-speaking children are just more conservative in their generalizations, and say ‘no’ more often than do English-speaking children, thus the observed language difference would be due to our choice of the ‘yes/no’ task procedure rather than real differences in the children's conceptualizations. Accordingly, in Experiment 3, we presented English- and Japanese-speaking children with objects that were unambiguously artifacts. The prediction is that both groups of children will generalize the names for unambiguous artifacts broadly by shape.

Method

Participants

Ten monolingual English-speaking children who were 30.83 to 38.8 months old and 10 Japanese-speaking children who were 30.43 to 38.13 months old participated. The English-speaking children's mean age was 34.42 months, and the Japanese-speaking children's mean age was 34.31 months. The English-speaking children were recruited from the population in Bloomington, IN. The Japanese-speaking children were recruited from the population in Niigata, Japan. No child had participated in Experiments 1 and 2 and all children passed the pre-training criterion.

Stimuli, materials and procedure

All aspects of the experiment were identical to Experiment 2 except for the stimuli. Neither the exemplars nor test objects had appendages of any kind attached, and the exemplars were more angularly and more complexly shaped than the more rounded forms used in Experiment 2. The same pre-training set was used with the same procedure as in Experiment 1 and 2 except that the appendages (pipe-cleaners) were removed. The two experimental sets consisted of an exemplar and five test objects. The two exemplars are illustrated in Figure 5. The tego exemplar was made of cardboard and painted with sand which gives the object the appearance of being carved from sandstone. The zeebee exemplar was made from plastic mesh. Five test objects were constructed for each exemplar: (1) a shape, color and texture match, (2) a shape and texture match, (3) a shape match, (4) a texture match, and (5) a color match. We included only two kinds of test objects that presented multiple property matches – a shape, color and texture match and a shape and texture match to reduce the number of trials and because matches on shape and texture appear the most diagnostic of animate-like categories. Thus, there were five test objects for each of two exemplars. Each test object queried twice for a total of 20 trials. All objects were 3-dimensional, approximately 7 cm × 7 cm × 7 cm in size.

Results and discussion

Children's proportion of ‘yes’ responses were submitted to an analysis of variance for a 2 (Language) × 2 (Multiple-match versus Single-property match) mixed design. The main effect of Language, $F(1, 18) = 0.53, p < 0.48$ was not reliable. Both English-speaking and Japanese-speaking children generalized names for these artifacts in the same way. The analysis revealed a reliable main effect
of Multiple- versus Single-property matches, $F(1, 18) = 240.93, p < 0.001$. Both groups of children generalized the name more to test objects that matched the exemplar in multiple properties than to test objects that matched the exemplar in just one. Finally, the analysis revealed no interaction between Language and Multiple-versus Single-property matches, $F(1, 18) = 1.73, p < 0.21$. Figure 6 shows children's 'yes' responses for each test object. Both Japanese-speaking children and English-speaking children generalized the exemplar's name to all instances that matched the exemplar in shape more often than expected by chance and they did not generalize the names to new instances that differed from the exemplar in shape. Clearly, Japanese-speaking children are not more conservative than English-speaking children in their generalizations of names for all kinds of things. The results confirm those of Imai and Gentner (1997) using our procedure. Given objects that are clearly artifacts both English-speaking children and Japanese-speaking children generalized the exemplar's name in the same way by shape. This fact suggests that the findings in Experiment 2 reflect the effect of the different language histories on children's interpretations of ambiguous things.

General discussion

Young Japanese-speaking children understand the implications of *iru/aru*. They generalize names for novel ambiguous objects presented in sentence frames using *iru* narrowly, to instances like the exemplar in both shape and texture – a pattern consistent with the conceptualization of the named thing as depicting an animal. When the name is presented in sentence frames using *aru*, however, they generalize the name broadly to objects that match the exemplar in shape – a pattern consistent with the conceptualization of the named thing as an artifact. These results from Experiment 1 show an on-line effect of language on children's categorizations. More crucially, the results of Experiment 2 suggest that a history of treating animates as individuals changes the default interpretation of ambiguously animate depictions. As predicted by the boundary-shift hypothesis, objects with perceptual properties straddling the individuation boundary are assimilated to the more individualized side. That is, in neutral linguistic contexts, Japanese-speaking children interpret ambiguous objects with vaguely limb-like appendages as depictions of animals, and generalize
ever, individuation may be fundamentally broader than such as the count–mass distinction in English. How-
one reflects on the structure of languages with devices
linguistic individuation, and certainly seems to be when
'how many' versus 'how much' may be at the center of
treat as continuous masses. This distinction between
treat as discrete and countable as opposed to those they
lar linguistic devices and also in the kinds of entities they
Languages differ in how they quantify, in their particu-
porting and reinforcing correlations among linguistic
boundary shifts are the consequence of mutually sup-
tions of solid substances as objects. We suggest that these
as animates and English-speaking children's interpreta-
the self-movement of that which is brought.
For example,
This type of alternation in
Japanese characterizes a number of verbs concerned
with moving objects. We list some in Table 1. In each
case, English uses the same verb, put, bring, pick up and
hold – for animate and inanimate things. Japanese con-
trasts different verbs for animate things that move on
their own as opposed to things that do not. However, it
is not that Japanese makes a distinction with these
contrasts that English never does. English does provide
verbs more specific to animates such as 'hug' versus
'hold' or 'lead' versus 'pull'. But these different verbs do
not form a contrastive, pervasive and obligatory system.
Crucially, the pattern of alternation in Japanese also
coincides with individuation in Japanese and may do so
precisely because self-movement marks animates.
Thus, Japanese appears to present the young learner with many lexical contrasts that segregate animates from objects and substances. The pervasiveness of this focus in Japanese seems likely to have developmental consequences beyond children’s interpretation of ambiguous depictions of animal-like things. The many mutually supporting linguistic contrasts concerning self-movement may help Japanese children discover the bundles of perceptual properties that characterize animate things. Yoshida and Smith (2001) provide data to support this idea. They found that Japanese-speaking children generalize names for novel objects with eyes by multiple similarities earlier in the course of noun learning than do English-speaking children. These eyed objects were also ambiguous – they were artifacts with only one cue suggestive of animacy – but they were less ambiguous than the objects used in Experiment 1 and Experiment 2 in that eyes are a strong and perceptually salient feature of animates. Although these objects were also ambiguous – they were artifacts with only one cue suggestive of animacy – but they were less ambiguous than the objects used in Experiment 1 and Experiment 2 in that eyes are a strong and perceptually salient feature of animates.

Although these experiments provide evidence of language’s effect on perception, we do not predict large cross-language differences given real animates with their full complement of static (eyes, mouths, limbs, heads, shape, textures) and dynamic (movement, reaction) properties. The differences reported here may be evident only as short-lived developmental differences – an acquisition that is a little earlier or later in one language as compared to another as in Yoshida and Smith (2001) or differences evident only with ambiguous forms as in Experiment 2. Universality is expected because with real animates and inanimates there are many correlated perceptual cues that organize objects into ontological kinds independently of language, and because the differences between animates and inanimates are relevant to speakers of all languages. However, by examining the special case of ambiguous things we have found that Japanese-speaking children are more sensitive to the animate–inanimate distinction than are English-speaking children and that this appears to be due to the structure of the language. As such, these results provide insight into the developmental processes that create universals as well as those that create subtle differences: correlation between the perceptual properties, categories and language may be the basis of ontological distinctions. Further, the results fit Luc’s (1992) claim that languages that more systematically and obligatorily mark a distinction lead the speakers of those languages to attend more habitually to that distinction. Imai and Gentner’s (1997) earlier results make this same point: English obligatorily marks the distinction between object and substance and English speakers are more attentive to one cue, solidity, that is relevant to that distinction. In the next section, we propose a mechanistic account of the boundary shifts at both the animate–object and object–substance boundaries.

An associative basis to the boundary shift?

We propose that ontological distinctions and the boundary shifts evident in English- and Japanese-speaking children’s name generalizations may be most directly explained in terms of associative processes. Ontological categories may emerge as the direct product of statistical regularities among linguistic forms, object properties and category structures. Figure 7 illustrates hypothesized correlations among perceptual properties and from perceptual properties to category structure. It is knowledge of these correlations that comprises the perceptual layer we proposed in Figure 1. Although not illustrated, it seems likely that these various connections vary in strength depending on the strength of relations in the world. For example, objects with angles and multiple parts are highly likely to be solid (since complex angular shapes cannot be readily formed from nonsolid substances). Thus angularity strongly predicts solidity and multiple parts and each of these cues and the whole cluster predicts categorization by shape. Analogously, nonsolid objects tend to be rounded and simply shaped, although many simply shaped things can also be solid. Thus, simple shape and roundedness weakly predict nonsolidity and categorization by material, but simple shape, roundedness and nonsolidity would jointly predict

Table 1 English verbs and the corresponding pairs of verbs in Japanese

<table>
<thead>
<tr>
<th>Word</th>
<th>English</th>
<th>Japanese</th>
</tr>
</thead>
<tbody>
<tr>
<td>put</td>
<td>I put the cup down</td>
<td>Watashi-wa koppu-wo shitani-oku</td>
</tr>
<tr>
<td></td>
<td>I put the little girl down</td>
<td>Watashi-wa onnaoko-wo shitani-oren</td>
</tr>
<tr>
<td>bring</td>
<td>I bring the cup to class</td>
<td>Watashi-wa koppu-wo kurasu-ni motteiku</td>
</tr>
<tr>
<td></td>
<td>I bring the little girl to class</td>
<td>Watashi-wa onnanoko-wo kurasu-ni tsureteiku</td>
</tr>
<tr>
<td>pick up</td>
<td>I pick up the cup</td>
<td>Watashi-wa koppu-wo mochiageru</td>
</tr>
<tr>
<td></td>
<td>I pick up the little girl</td>
<td>Watashi-wa onnanoko-wo dokugoreru</td>
</tr>
<tr>
<td>hold</td>
<td>I hold the cup</td>
<td>Watashi-wa koppu-wo motu</td>
</tr>
<tr>
<td></td>
<td>I hold the little girl</td>
<td>Watashi-wa onnanoko-wo daku</td>
</tr>
</tbody>
</table>

© Blackwell Publishing Ltd. 2003
more strongly categorization by material. Finally, a strong cluster of interrelated cues would seem to characterize animate things and all these cues predict categorization by multiple similarities. The correlations in Figure 7 are perceptual and reflect the structure of the world. They are therefore available to speakers of both English and Japanese. These correlations constrain ontological categories for speakers of all languages and thus create universals.

What do the differences between English and Japanese add to these perceptual correlations? As illustrated in Figure 8, perceptual properties and category structures characteristic of animates are also associated with particular linguistic forms in Japanese, and perceptual properties and category structures characteristic of inanimates are associated with contrasting forms. Figure 9 illustrates how perceptual properties and category structures characteristic of animates and objects are also associated with particular linguistic forms in English and how perceptual properties and category structures characteristic of nonsolids are associated with contrasting forms.

Figure 7 Illustration of associations between perceptual cues and category structure available in the world.

Figure 8 Associations among perceptual cues, category structure and linguistic cues available to learners of Japanese.
One can see in these illustrations how linguistic cues can influence children’s name generalizations, how in Soja’s (1992) study, saying a mel increased English-speaking children’s generalizations by shape, whereas saying some mel increased their generalizations by material and how in Experiment 1 of the present study saying iru increased Japanese-speaking children’s generalizations by shape and texture, whereas saying aru increased their generalization by shape alone. Importantly, however, the systematic linguistic contrasts may do more than just add another predictive cue to the mix of correlations. They might differentially bolster and weaken perceptual correlations, changing, in a sense, how things are perceived.

Specifically, the inter-connections among perceptible cues associated with animacy – head, eyes, limbs, self-movement – may be strengthened by their joint association with linguistic forms in Japanese. Thus, because of their connections to the same cluster of linguistic cues, the feature ‘limb-like appendages’ may be more strongly linked to self-movement and to eyes for Japanese speakers than for English speakers. The implication is that for Japanese speakers, vaguely suggestive limbs – because of reinforcing connections provided by the Japanese language – may be more likely to bring forth ideas associated with animate things, including categorization by multiple properties. Thus, vaguely limb-like appendages may be a stronger cue suggestive of animacy for Japanese than English speakers. Analogously, the linguistic forms in English that signal discrete countable things may reinforce the connections between cues characteristic of objects and between those cues and categorization by shape. And thus, even in tasks in which those linguistic cues are not present, solidity – even in the context of a simple shape – may robustly lead to categorization by shape. Although speculative, these ideas fit the general workings of interactive-activation models (Gasser, Colunga & Smith, 2001; Kersten & Billman, 1997; McClelland & Rumelhart, 1988; Billman & Heit, 1989): overlapping connections reinforce each other such that one cue alone can bring forth activation of a whole correlated cluster. The linguistic and perceptual layers of Figure 1 are clearly evident in Figures 8 and 9. Where is the conceptual layer of ontological categories, the middle layer in Figure 1? We suggest it may be in the whole pattern of connections.
This associative learning account is clearly undetermined at present—both by data and formal modeling. However, it offers a clear theoretical framework within which to investigate children's developing ontologies. There are a number of phenomena to be explained beyond the boundary shifts on which we concentrated here. These include curvilinear patterns of developmental change in English-speaking children's attention to the material of nonsolids (Imai & Gentner, 1997; Samuelson & Smith, 1996; Colunga & Smith, 2001) and also Japanese speakers' greater attention than English speakers to the material of nonsolids.

Asymmetry

The present results on an animacy–object boundary shift and the prior results showing an object–substance boundary shift (Imai & Gentner, 1997) both suggest an assimilation of ambiguous kinds to the more individuated end of the linguistic continuum. We suspect that this is a general aspect of linguistic individuation that is evident in other aspects of language use. That is, speakers of a language may freely confer special status on nonindividuals by treating them as individuals but the inverse may not occur so freely. By our intuitions, this is the case for both English and Japanese. For example, there are contexts in which speakers of English use typically mass nouns as count nouns, saying such things as 'I will have two waters, please' and 'We need another water here.' Intuition suggests that all mass nouns that refer to concrete substances can be used in this way, in the right context. The use of object names as mass nouns seems more unusual and more wrong. 'I have too much cup' and 'I would like some cup' seem grammatically wrong in all imaginable contexts.

Analogously, the forms in Japanese that are used with animates can be generalized to inanimates and often are in playful contexts which attribute intentions to inanimate things. Thus one can say tootsuta-kun-ga iru, 'there is [animate] Mr. Toaster'. But again, the reverse, otokonoko-ga aru, 'there is [inanimate] a boy', seems very wrong. And it is difficult to imagine a playful or metaphorical context in which such a construction could possibly be appropriate. If these intuitions are right, then, there is an asymmetry in use of individualized and nonindividualized forms; anything can be potentially, temporarily individualized, but entities on the individualized side of the boundary must be treated as individuals and cannot be de-individualized. Notice that the asymmetry in use to which we refer is not an asymmetry in type or token frequency, but an asymmetry in the allowability of exceptions; entities generally conceptualized as continuous may be individualized but entities generally privileged as individuals cannot so easily be treated as nonindividuals. Why is the asymmetry in this particular direction? We can only conjecture that it might originate in a perceptual system that is tuned to pick out coherent wholes segregated from the background or in a conceptual system that privileges the discrete over the continuous.

Conclusion

How children form categories depends on the language they are learning, and in particular on the way that language individuates kinds. Presented with the very same (albeit ambiguous) objects, Japanese-speaking and English-speaking children form different categories. Japanese-speaking children generalized names for vaguely animal-like things by multiple similarities, as if they were depictions of animals. English-speaking children generalized names for these very same things by shape, as if they were artifacts. These results were predicted by the boundary shift hypothesis, by the proposal that the linguistic boundary between individuals and nonindividuals influences the perceptual boundaries between ontological kinds. The present results also illustrate how categorization is the product of an integration of language, perceptual and cognitive information over the long term and in the moment. The long-term influences are the perceptual correlations in the world, the structure of lexical categories and the structure of the language being learned. The in-the-moment influences are the specific linguistic and perceptual cues present when a novel object is named. In this way, our series of experiments point to a dynamic construction of specific categories and also ontological kinds.

Acknowledgements

This research was supported by a grant from the National Institutes of Mental Health, MH6200. We thank Eliana Colunga and Natsuko Tsujimura for discussions and comments on the manuscript.

References

Shifting ontological boundaries

Received: 19 February 2001
Accepted: 8 August 2001